วันพุธที่ 16 มีนาคม พ.ศ. 2554

โครงสร้างของตัวรถโฟล์คลิฟท์ และ น้ำหนักบรรทุกที่อาจมีผลกระทบต่อความปลอดภัย








โครงสร้างของตัวโฟล์คลิฟท์ และ น้ำหนักบรรทุกที่อาจมีผลกระทบต่อความปลอดภัย มีดังนี้

- มีความเป็นไปได้ที่ท้ายรถจะยกสูงขึ้นทำให้เกิดการเอียงหรือการพลิกคว่ำไปข้างหน้า (Forward Tipover)

- มีความเป็นไปได้ที่รถจะเสียความสมดุลด้านใดด้านหนึ่ง ทำให้ตัวรถพลิกคว่ำด้านข้าง (Side Tipover)

- มีความเป็นไปได้ที่จะเกิดการพลิกไปข้างหน้าหากมีการเบรคอย่างแรงขึ้นอยู่กับ ความเร็วที่ใช้ น้ำหนักที่บรรทุก และระยะการเบรค

- มีความเป็นไปได้ที่จะเกิดพลิกไปข้างหน้าหากทีการถอยหลังด้วยความเร็วสูง

1. ความสมดุลของตัวรถโฟล์คลิฟท์ (Counterbalance forklift)

ข้อมูลต่อไปนี้ อ้างอิงจากงานวิจัยของศูนย์ค้นคว้าด้านอุบัติเหตุแห่งมหาวิทยาลัยโมแนช รัฐวิกตอเรีย ออสเตียเรีย แสดงถึงจุดสมดุลของรถโฟล์คลิฟท์ที่ใช้กันทั่วไปในรัฐวิกตอเรีย

- ตัวรถและความสมดุลของตัวรถและงายก เชื่อมต่อโดยตรงกับเพลาหน้า (เพลาขับเคลื่อน) โดยมีความว่องไวสูง

- เสากระโดง (Mast) มีเดือยเชื่อมกับตัวรถบริเวณเพลาหน้าหรือจุดใกล้เคียง

- แกนพวงมาลัยมีเดือยเชื่อมต่อกับตัวรถตรงจุดศูนย์กลาง ดังนั้น ยางบังคับทิศทาง (ยางหน้า) จะยังคงสัมผัสกับพื้นแม่พวงมาลัยจะสั่นสะเทือนเล็กน้อยขณะขับเคลื่อนไปบนพื้นผิวปฏิบัติงานปกติ

- ระบบเบรกสัมพันธ์โดยตรงกับล้อหน้าเท่านั้น

สำหรับตัวรถโฟล์คลิฟท์หนึ่งคันสามารถจะติดตั้งชิ้นส่วนเสริมได้โดยไม่เสียสมดุล ดังต่อไปนี้

- เสากระโดงที่มีความสูงแตกต่างกันในช่วง 150-750 ซม. โดยเสากระโดงสามารถแบ่งเป็นขั้นหรือชั้นได้

- ล้อและยางที่แตกต่างกัน เช่น ยางตัน ยางเติมลมทั้งชนิดมีและไม่มียางใน

- งายกในลักษณะต่างๆ ที่เหมาะสมกับการใช้งานจะมีส่วนเสริมด้านข้างด้วยหรือไม่ก็ได้

- ส่วนประกอบพิเศษชนิดอื่น ๆ

2. สามเหลี่ยมความมั่นคง (Stability triangle)

เงื่อนไขที่ความสมดุลของตัวโฟล์คลิฟท์จะทำให้เกิดการพลิกไปข้างหน้าหรือด้านข้างมีด้วยกัน 3 ประการ คือ

1. ยางล้อหน้ามันผัสกับพื้นทางวิ่งในลักษณะหมุนหรือพลิกในทิศทางออกจากตัวรถอย่างรวดเร็ว จะทำให้ตัวรถพลิกไปข้างหน้า (forward tipover)

2. ยางล้อหน้าด้านซ้ายพลิกในทิศทางเข้าหาตัวรถอย่างรวดเร็ว หรือยางล้อหลังพลิกในทิศทางออกจากตัวรถอย่างรวดเร็วจะทำให้ตัวรถพลิกค่ำด้านข้าง (side tipover)

3. ยางล้อหน้าด้านขวาพลิกในทิศทางออกจากตัวรถอย่างรวดเร็ว หรือยางล้อหลังพลิกในทิศทางเข้าหาตัวรถอย่างรวดเร็ว จะทำให้ตัวรถพลิกค่ำด้านข้าง (side tipover)




รูปสามเหลี่ยมความมั่นคงของโฟล์คลิฟท์

เนื่องจากยางล้อหลังมีระยะหมุน (ไปทางซ้ายหรือขวา) ที่แคบมาก ดังนั้นการพลิกคว่ำไปด้านข้างของโฟล์คลิฟท์มักจะเกิดการหมุนผิดทิศทางอย่างรวดเร็วของล้อหน้าไม่ว่าจะเป็นล้อด้านซ้ายหรือด้านขวา ในกรณีนี้อาจจะเกิดการพลิกคว่ำไปด้านหน้าตามมาด้วยก็ได้

3. จุดศูนย์ถ่วงของตัวรถ (Center of mass)

สิ่งที่ทำให้วัตถุต่างๆ ทรงตัวอยู่ได้คือ จุดศูนย์ถ่วง รถโฟล์คลิฟท์ก็เช่นกัน จุดศูนย์ถ่วงของรถโฟล์คลิฟท์ได้แก่ จุดที่ตัวรถตั้งอยู่แล้วเกิดความสมดุล เมื่อรถจอดอยู่เฉยๆ จะไม่มีแรงใด ๆ มา กระทำต่อจุดศูนย์ถ่วงนอกจากแรงดึงดูดของโลก ซึ่งก็ทำให้เกิดความสมดุลตามโครงสร้างความมั่นคงของตัวรถ จะไม่มีการพลิกคว่ำไปข้างหน้าหรือพลิกคว่ำด้านข้าง แต่เมื่อมีการเพิ่มน้ำหนักไปที่งายก จุดศูนย์ถ่วงของตัวรถและสัมภาระที่ความเหมาะสม จะไม่ทำให้เกิดการเสียสมดุลปัญหามักจะเกิดขึ้นเมื่อมีการเพิ่มน้ำหนักที่งายกมากเกินไปจนทำให้จุดศูนย์ถ่วงขยับเกินจุดที่ตั้งปกติจนทำให้ล้อหลังลอยขึ้นมาจากพื้น

4. แรงเหวี่ยงหนีศูนย์กลาง (Dynamic Forces)

เมื่อโฟล์คลิฟท์วิ่งขึ้นลงทางลาดหรือเข้าโค้งด้วยความเร็วระดับหนึ่ง หรือเมื่อมีการเบรดหรือเร่งความเร็วจะมีแรงหนีศูนย์กลางทำให้ตัวรถเอียงไปด้านข้างหรือเกิดการกระดกที่ล้อหน้าหรือล้อหลัง ในสถานการณ์เช่นนี้ หากมีการพลิกหรือหมุนของล้อรถผิดทิศทางดังที่กล่าวไปในหัวข้อสามเหลี่ยมความมั่นคงก็จะเกิดการพลิกคว่ำทั้งในลักษณะการพลิกคว่ำไปข้างหน้าหรือพลิกคว่ำด้านข้างได้

5. การพลิกคว่ำด้านข้าง - การพลิกคว่ำไปข้างหน้า (Tipover sideways vs. tipover forwards)

เมื่อโฟล์คลิฟท์มีการบรรทุกสัมภาระที่งายก จุดศูนย์ถ่วงก็จะเคลื่อนไปข้างหน้าและมีแนวโน้มจะเสียสมดุล ทั้งนี้มีความเป็นไปได้ที่จะเกิดแรงยกด้านท้ายรถทำให้พลิกคว่ำไปข้างหน้าได้ทุกขณะเนื่องจากความมั่นคงเหลืออยู่น้อยมาก ในขณะเดี่ยวเมื่อมีการบรรทุกน้ำหนักที่งายกและเคลื่อนไปข้างหน้าด้วยความเร็วปกติ ล้อทั้งหมดก็จะรับน้ำหนักในลักษณะที่เฉลี่ยเท่ากัน ในแต่ละล้อ (4 หรือ 6 ล้อ แล้วแต่รุ่นของรถ) ทำให้เกิดการสมดุลด้านข้างจึงทำให้โอกาศที่จะเกิดการพลิกคว่ำด้านข้างมีน้อยลง

ขณะมีการบรรทุกที่งายกและเคลื่อนไปข้างหน้า แนวโน้มที่จะเกิดการพลิกคว่ำไปข้างหน้า (เริ่มต้นด้วยการลอยตัวขึ้นมาจากพื้นของล้อหลัง) จะมีสูงมากหากน้ำหนักมีมากเกินไปจนทำให้เสียสมดุล แต่ในทางกลับกันแนวโน้มที่จะเกิดการพลิกคว่ำด้านข้างจะมีน้อยกว่า

การพลิกคว่ำด้านข้างไปยังข้างใดข้างหนึ่งมักเกิดขึ้นขณะโฟล์คลิฟท์วิ่งรถเปล่า (ไม่มีการบรรทุกใดๆ บนโฟล์คลิฟท์) ถึง 75% ของอุบัติเหตุโฟล์คลิฟต์พลิกคว่ำด้านข้างทั้งหมด

ข้อควรจำ เมื่อมีการบรรทุกให้ระวังการพลิกคว่ำไปข้างหน้า แต่เมื่อวิ่งรถเปล่าให้ระวังการพลิกคว่ำไปยังด้านข้างทั้งซ้ายและขวา

6. ความมั่นคงและการเพิ่มน้ำหนักของสัมภาระ (Stability and raised loads)

การเพิ่มน้ำหนักสัมภาระบรรทุกบนงายกจะทำให้ความมั่นคงของโฟล์คลิฟท์ลดลง และโอกาศที่จะเกิดการพลิกคว่ำในทุกทิศทางก็มีสูงขึ้น ทั้งนี้ ขึ้นอยู่กับขนาดของส่วนรองรับน้ำหนักโดยเฉพาะล้อและยางว่าสามารถรับแรงกดที่เพิ่มขึ้นทั้งด้านข้างหน้าและหลังได้ดีขนาดไหน ก้าเป็นไปในทางบวกก็ทำให้แนวโน้มการพลิกคว่ำทั้งด้านหน้าและด้านข้างลดลง

7. มาตรฐานรับรองด้านความมั่นคงและความปลอดภัยของโฟล์คลิฟท์(Standard for forklift stability or safety)

ในออสเตรเลียและนิวซีแลนด์ยอมรับทั้งมาตรฐานของตัวเอง (AS,AS,/NZS) มาตรฐานญี่ปุ่นที่เป็นผู้ผลิต และมาตรฐานสากล (ISO) ซึ่งแบ่งย่อยลงไปเป็นหลายฉบับตามลักษณะหรือประเภทของตัวรถ เครื่องยนต์ รูปแบบการใช้งาน รวมไปถึงคุณสมบัติพิเศษที่เพิ่มขึ้นมาเพื่อความปลอดภัยโดยเฉพาะ

8. การทดสอบความมั่นคงของตัวรถโฟล์คลิฟท์ ตามมาตรฐานออสเตียเลียและมาตรฐานสากล

การทดสอบเพื่อระบุถึงความสามารถสูงสุดของโฟล์คลิฟท์
ต้องเป็นไปตามข้อกำหนดมาตรฐานต่าง ๆ รวมถึง AS 2359,AS 4972 (Int.) ของออสเตียเลีย หรือมาตรฐานสากล ISO 13863 หรือ ISO 1579

สำหรับรถโฟล์คลิฟท์ที่ได้รับการรับรองมาตรฐานจะต้องผ่านการทดสอบความสมดุลใน 4 ลักษณะ ดังต่อไปนี้

1. การยกกองสัมภาระแนวตรง-ทดสอบโดยใช้โฟล์คลิฟท์จอดอยู่บนแทนทดสอบและพื้นลาด จากนั้นทำการยกกองสัมภาระบนงายกที่เลื่อนสูงขึ้นจนสุดเสากระโดง ทั้งนี้

ท้ายรถจะต้องไม่กระดกจนกว่าจะทำการยกสัมภาระที่มีน้ำหนักสูงสุดตามที่กำหนดไว้ ในกรณีของพื้นลาดกำหนดอัตราการเอียงและน้ำหนักสูงสุดที่ใช้ในการยกไว้ ดังนี้

- ท้ายรถอยู่บนทางลาดทำมุมกับพื้น 4% เมื่อยกสัมภาระหนัก 4,999กิโลกรัม

- ท้ายรถอยู่บนทางลาดทำมุมกับพื้น 3.5% เมื่อยกสัมภาระน้ำหนัก 5,000 กิโลกรัม - 50,000 กิโลกรัม

2. การเคลื่อนตัวแนวตรง-ทดสอบโดยบรรทุกสัมภาระบนงายกที่ลดต่ำสุดแล้วเคลื่อนตัวรถไปข้างหน้า เมื่อเพิ่มน้ำหนักสัมภาระสูงสุดแล้วท้ายรถจะต้องไม่กระดกเมื่อรถตั่งอยู่บนแทนทดสอบและทางลาดทำมุมกับพื้น 18%

3. การยกกองสัมภาระแนวเอียง-ทดสอบโดยให้รถโฟล์คลิฟท์จอดอยู่บนแท่นทดสอบจนถึงพื้นลาด จากนั้นทำการยกกองสัมภาระบนงายกที่เลื่อนสูงขึ้นจนสุดเสากระโดง ทั้งนี้ หลังจากเพิ่มน้ำหนักสัมภาระสูงสุดแล้ว ล้อรถด้านข้างจะต้องไม่กระดกเมื่อรถตั้งอยู่บนแท่นทดสอบและทางลาดด้านข้างทำมุมกับพื้น 6%

4.การเคลื่อนตัวแนวเอียง-ทดสอบโดยบรรทุกสัมภาระบนงายกที่ลดต่ำสุดแล้วเคลื่อนตัวรถไปข้างหน้าสอบและพื้นที่ลาด ทั้งนี้ล้อด้านข้างจะต้องไม่กระดกจนกว่าจะทำการยกสัมภาระน้ำหนักสูงสุดตามที่กำหนดไว้ ในกรณีของพื้นลาด กำหนดอัตราการเอียงและน้ำหนักสูงสุดที่ใช้ในเคลื่อนตัวไว้ ดังนี้

- ล้อด้านข้างอยู่บนทางลาดทำมุมกับพื้น 40% เมื่อบรรทุกสัมภาระน้ำหนัก 4,999 กิโลกรัม

- ล้อด้านข้างอยู่บนทางลาดทำมุมกับพื้น 50% เมื่อบรรทุกสัมภาระน้ำหนัก 5,000 กิโลกรัม-50,000 กิโลกรัม

ทั้งนี้ จะขึ้นอยู่กับความเร็วที่ใช้ในการเคลื่อนตัวรถด้วย

การทดสอบที่ 1 และ 2 เพื่อพิจารณาความมั่นคงของตัวรถที่จะไม่เกิดการพลิกคว่ำไปข้างหน้าเมื่อมีการยกสัมภาระ การทดสอบที่ 3 เพื่อพิจารณาความมั่นคงของตัวรถที่จะไม่เกิดการพลิกคว่ำด้านข้างเมื่อมีการยกสัมภาระ และ การทดสอบที่ 4 เพื่อพิจารณาความมั่นคงของตัวรถที่ไม่เกิดการพลิกคว่ำด้านข้างเมื่อเคลื่อนรถเปล่าไปข้างหน้า

ในการทดสอบตามมาตรฐานออสเตรเลียและมาตรฐานสากลดังกล่าวข้างต้น มีบทสรุปที่หน้าสนใจของโฟล์คลิฟท์ที่เข้าทดสอบ 178 คัน (ขนาดบรรทุกตั้งแต่ 1-48 ตัน) ดังต่อไปนี้

ข้อจำกัดส่วนต่อขยายของงายก (fork)

 ส่วนต่อขยายด้านข้างของงายกที่ไม่มีผลต่อสมดุลของตัวรถคือ ไม่เกิน 10 ซม. สำหรับโฟล์คลิฟท์ขนาดบรรทุก 6.3 ตัน และ 15 ซม. สำหรับโฟล์คลิฟท์ที่ใหญ่กว่า 6.3 ตันสำหรับ ระยะ 10 ซม. ที่ขยายได้สำหรับรถขนาด 6.3 ตัน สามารถขยายได้อีก 1/3 หรือราว 33.33% ถ้าใช้เสากระโดงสูง 4.3 เมตร และ 25% ถ้าใช้ เสากระโดงสูง 6.0 เมตร

- การพลิกคว่ำเมื่อจอดอยู่กับที่

 ค่าโดยเฉลี่ยการเพิ่มน้ำหนักบรรทุกจากอัตราที่กำหนดไว้ที่รถโฟล์คลิฟท์จะไม่พลิกคว่ำคือ 37%

 ค่าขั้นต่ำในการเพิ่มน้ำหนักบรรทุกจากอัตราที่กำหนดไว้ที่รถโฟล์คลิฟท์จะไม่พลิกคว่ำคือ 21%

 80% ของรถโฟล์คลิฟท์ที่เข้ารับการทดสอบ สามารถเพิ่มน้ำหนักบรรทุกจากอัตราที่กำหนดไว้ได้โดยเฉลี่ย 33%~60%

- การพลิกคว่ำไปข้างหน้าเมื่อมีการเบรค

เมื่อขับโฟล์คลิฟท์ไปข้างหน้าก้จะต้องมีการใช้เบรกตามมา ซึ่งตัวแปรความปลอดภัย (Safety factor) ที่เป็นความสมดุลของตัวรถจะเริ่มลดลง เมื่อมีการใช้เบรก น้ำหนักตัวรถและสัมภาระจะเทไปข้างหน้ารถทำให้มีแนวโน้มที่โฟล์คลิฟท์จะพลิ่กคว่ำไปข้างหน้า แม้ว่าจะใช้ความเร็วไม่มากนักแต่เมื่อมีการเบรกก็มีโอกาสจะทำให้รถเสียสมดุลดังกล่าว การเพิ่มน้ำหนักบรรทุกบนงายกที่เกินกำหนดและมีการเบรกอย่างเต็มที่ (Full Braking) ย่อมทำให้เกิดการเสียสมดุลอย่างรุนแรงจนเกิดการพลิกคว่ำอย่างง่ายดาย

มหาวิทยาลัยโมแนชได้ทำการทดสอบในประเด็นนี้และได้ข้อสรุป คือ

 ค่าเฉลี่ย : เมื่อบรรทุกน้ำหนักเกินอัตรากำหนด 0.27 เท่า และทำการเบรกเต็มที่จะทำให้เกิดการพลิกคว่ำไปข้างหน้า

 ค่าชัดเจนที่สุด : เมื่อบรรทุกน้ำหนักเกินอัตรากำหนด 0.43 เท่า และทำการเบรกเต็มที่จะทำให้เกิดการพลิกคว่ำไปข้างหน้า เช่นเดี่ยวกับการขับถอยหลังด้วยความเร็ว เมื่อมีการเบรกก็จะมีการเกิดผลกระทบต่อสมดุลตัวรถโฟล์คลิฟท์เหมือนกับการขับไปข้างหน้า

ผลที่จะได้รับกับแนวโน้มการพลิกคว่ำไปข้างหน้าเมื่อมีการเบรก

ผลที่จะได้รับจากแนวโน้มการพลิกคว่ำไปข้างหน้าเมื่อมีการเบรกหรือการเร่งถอยหลัง (ขึ้นอยู่กับรูปแบบโฟล์คลิฟท์และชนิดของสัมภาระ) มีดังต่อไปนี้

- ท้ายรถโฟล์คลิฟต์อาจจะกระดก แล้วสัมภาระจะตกจากงายก จากนั้นล้อหลังจะตกลงพื้น
- ท้ายรถโฟล์คลิฟต์อาจจะกระดก แต่สัมภาระอาจอยู่บนงาที่ครูดไปกับพื้น เมื่อรถหยุดล้อหลังจะตกลงพื้น
- ท้ายรถโฟล์คลิฟต์อาจจะกระดก แต่งายกไปชนกับสิ่งกีดขวาง สัมภาระจะหล่นลงพื้น ใรขณะที่ตัวคนขับจะถูกเหวี่ยงมาข้างหน้าและกระแทกกับเสากระโดงหากไม่ได้รัดเข็มขัดนิรภัย
- ถ้ามีการยกสัมภาระขึ้นท้ายรถอาจจะกระดก สัมภาระตกจากงายกแล้วล้อหลังตกลงพื้น
- ถ้าสัมภาระ (เช่น กล่องคอนเทนเนอร์) ผูกแน่นติดกับงายกแล้วยกสูงขึ้น ขอบกล่องจะกระแทกพื้นขณะที่ล้อหลังกระดกขึ้นสูง ทำให้รถพลิกคว่ำไปข้างหน้า
- สัมภาระผูกโยงกับงายกแล้วยกสูงขึ้น กล้องจะกระแทกพื้นขณะที่ล้อหลังกระดกขึ้นสูงมาก ทำให้รถพลิกคว่ำไปข้างหน้า
- ถ้าสัมภาระมีลักษณะที่ยาวมาก (เช่นกล่องคอนเทนเนอร์หรือลังบรรจุผลิตภัณฑ์ต่างๆ) และผูกแน่นติดกับงายกแล้วยกสูงขึ้น ฟอร์กลิฟต์จะพลิกคว่ำไปข้างหน้าเพราะขอบกล่องด้านนอกสุดจะกระแทกพื้นทันทีทำให้น้ำหนักไหลไปรวมด้านหน้า รถจะพลิกคว่ำไปข้างหน้าโดยที่ล้อหลังไม่มีโอกาสตกพื้นเพื่อรักษาสมดุลของตัวรถ

กล่าวโดยสรุป จากหลายกรณีศึกษาพบว่า การเบรกรถโฟล์คลิฟท์ ส่วนใหญ่จะเกิดขึ้นเมื่อมีการบรรทุกสัมภาระ และมีการเบรกอย่างแรงโดยรถจะไม่พลิกคว่ำไปข้างหน้าแต่สัมภาระบนงายกจะเคลื่อนไปข้างหน้าหรือตกลงจากงายกทั้งนี้ความเสี่ยงจะสูงขึ้นถ้าผูกสัมภาระติดกับหรือผูกโยงกับงายกซึ่งจะเกิดการพลิกคว่ำไปข้างหน้าอยู่บ่อยๆ ดังนั้น คนขับโฟล์คลิฟท์ต้องไม่เบรกอย่างแรง ตามกฏหมายความปลอดภัยของออสเตรเลียจะมีการกำหมดความดันที่ใช้กับเบรกเพื่อป้องกันการเบรคที่รุ่นแรงจะทำให้เกิดการพลิกคว่ำไปข้างหน้าแต่ต้องใช้ระยะการหยุดที่ค่อนข้างยาวทำให้คนขับเหยียบเบรกแรงขึ้นเพื่อลดระยะการหยุดให้สั้นลง

บางกรณีที่มีคนเดินเท้าอยู่ข้างหน้าอาจจะมีการชนขึ้น คนขับอาจเบรกอย่างแรงหรืออย่างกระทันหัน เพื่อหยุดรถในระยะสั้นๆ จึงต้องมีการกำหนดความเร็วเข้ามาร่วมด้วยเพื่อให้ระยะการหยุดรถอยู่ในระดับยอมรับได้ เป็นการลดความเสี่ยงที่เกิดการชนเมื่อมีคนเดินเท้าเข้ามาอยู่ในทางวิ่ง นอกเหนือไปจากความเสี่ยงต่อการพลิกคว่ำ ไปข้างหน้าของโฟล์คลิฟท์

การพลิกคว่ำไปด้านข้างเมื่อวิ่งรถเปล่า

75%ของการพลิกคว่ำไปด้านข้าง เกิดขึ้นเมื่อมีการวิ่งรถเปล่า เนื่องจากน้ำหนักถ่วงที่จะทำให้เกิดการสมดุลทางด้านข้าง ปัจจัยสำคัญที่เข้ามาร่วมด้วย เช่น ความเร็วที่ใช้ และรัสมีการเลี้ยว

โดยการออกแบบแล้ว โฟล์คลิฟท์เป็นพาหนะที่มีความคล่องตัวสูง หน้าไว และมีวงเลี้ยวแคบมาก ที่สำคัญคือ มีแนวโน้มจะเกิดการพลิกไปด้านข้างได้ตลอกเวลา ตัวฟอร์กลิฟต์เปล่ามีแรงด้านการพลิกด้านข้างค่อนข้างต่ำ จากการทดสอบเพื่อหาผลลัพธ์การลดความเสี่ยงต่อการพลิกคว่ำด้านข้างของฟอร์กลิฟต์ สรุปได้ดังต่อไปนี้

- ในการวิ่งรถเปล่า โดยเฉลี่ยแล้ว ให้ใช้ความเร็ว 1/3 ของความเร็วสูงสุดที่กำหนดไว้สำหรับรถขนาดเล็กขนาดความสามารถในกายกไม่เกิน 5 ตัน ควรลดความเร็วให้เหลือประมาณ 6 กม./ชม. แต่ไม่ควรเกิน 8 กม./ชม..

- การใช้ล้อหน้าแบบยางคู่ในแต่ละข้าง (Dual Tyres) สามารถเพิ่มความสมดุลของตัวรถขณะวิ่งรถเปล่าเพิ่มขึ้น 20 % เมื่อเทียบกับการใช้ล้อหน้าแบบยางเส้นเดียวในแต่ละข้าง

- การใช้ล้อหน้าแบบยางคู่ในแต่ละข้าง (Dual Tyres) สามารถเพิ่มความเร็วของฟอร์กลิฟต์เพิ่มขึ้นได้อีก 10% โดยไม่มีผลกระทบต่อสมดุลนั่นคือ สามารถใช้ความเร็วได้ 9 กม./ชม.

ข้อเสนอแนะ การลดความเสี่ยงต่อการพลิกคว่ำด้านข้างขณะวิ่งรถเปล่า หากเป็นฟอร์กลิฟต์ชนิดล้อหน้ายางเดียวในแต่ละข้างให้จำกัดความเร็วไว้ที่ 8 กม./ชม. และชนิดล้อหน้ายาวคู่ในแต่ละข้างให้จำกัดความเร็วไว้ที่ 9 กม./ชม.ข้อยกเว้นที่เป็นไปได้คือ

- ฟอร์กลิฟต์นั้น ผู้ผลิตได้รับการรับรองว่าขณะวิ่งรถเปล่าสามารถใช้ความเร็วสูงกว่าที่ระบุไว้ได้อย่างปลอดภัย

- สภาพแวดล้อมการทำงาน (เส้นทางวิ่ง) ที่แตกต่างหรือเปลี่ยนแปลงได้ต้องนำมาเป็นประเด็นในการพิจารณาการจำกัดความเร็วใหม่ ตัวอย่างเช่น พื้นถนนที่ไม่เรียบต้องจำกัดความเร็วให้ต่ำกว่าที่เตยใช้ปกติ

ผลกระทบจากการใช้ยางต่างชนิด

ยางที่ใช้กับรถฟอร์กลิฟต์มีสองชนิดคือ ยางตันและยางลม (ใช้ทั้งชนิดที่มี และไม่มียางใน) การทดสอบกับรถฟอร์กลิฟต์ขนาด 2.7-2.9 ตัน ความสูงของชวงยกอยู่ในระดับ 4.5 เมตร (4,500 มม.) ได้ผลสรุป คือ

- ยางตันให้การเอียงที่ขอบยางน้อยกว่ายางชนิดเติมลมถึง 5.6 เท่า ทำให้การทรงตัวขณะวิ่งหรือขณะเบรกดีกว่า

- อัตราเลื่อนไปข้างหน้าของสัมภาระบนงายกถ้าใช้ยางเติมลมจะมีอัตรา 164 มม. ในขณะที่ยางตันมีอัตราเพียง 26 มม.

- ในการรับน้ำหนักขณะยกสัมภาระสูงขึ้น ยางตันสามารถรับน้ำหนักได้ 500 กิโลกรัม บนช่วงยกที่ความสูง 4,775 มม. ในขณะที่ยางเติมลม สามารถรับน้ำหนักได้เพียง 210 กก. ที่ความสูง 4,300 มม.

- เมื่อบรรทุกสัมภาระแล้วยกขึ้นจนสุดความสูงเสากระโดง อันตราเสียงที่จะเกิดการพลิกคว่ำไปข้างหน้าของโฟล์คลิฟท์ที่ใช้ยางตันมีน้อยกว่าโฟล์คลิฟท์ที่ใช้ยางเติมลมถึงหนึ่งเท่าตัว

ข้อเสนอแนะ การเลือกใช้ยางชนิดเติมลม ควรเป็นทางเลือกสุดท้ายสำหรับโฟล์คลิฟท์ที่ใช้งานบนพื้นผิวเรียบเพราะมีค่าความเสี่ยงต่อการเสียสมดุลสูงเมื่อเกิดแรงอันเนื่องมาจากการเคลื่อนที่และการหยุดรถ รวมทั้งไม่ควรใช้ยางชนิดเติมลมกับฟอร์กลิฟต์ที่ใช้งานบนพื้นผิวที่มีความสูงต่ำแตกต่างกันมาก เช่น บริเวณที่มีลูกระนาด มีหลุมบ่อ ฯลฯ

ความสามารถในการบรรทุกและความสูงของโฟล์คลิฟท์

สำหรับโฟล์คลิฟท์ชนิดเดี่ยวกัน การแยกแยะความแตกต่างจะอยู่ลักษณะการออกแบบของเสากระโดงที่เป็นตัวรับงายกโดยที่อัตราการยกสูงของงายก จะเป็นตัวกำหนดยางล้อหน้าที่จะนำใช้ว่าจะเป็น ยางเดี่ยวหรือยางคู่ในแต่ละข้าง ในการทดสอบโฟล์คลิฟท์ขนาดงายกมาตรฐาน (50 ซม.) มีข้อสรุปที่น่าสนใจดังต่อไปนี้

- ยางเดี่ยวเหมาะสมที่จะใช้กับโฟล์คลิฟท์ที่งายกเลื่อนได้สูงสุด 4.0 เมตร

- ยางคู่เหมาะสมที่ใช้กับโฟล์คลิฟท์ที่งายกลื่อนได้สูงสุด 5.0 เมตร หรืองายกที่มีกระบอกสูบไฮดรอลิกที่ยกของได้ 2.5 ตันหรือมากกว่า

โดยสรุปแล้ว เพื่อความปลอดภัยในการใช้งานโฟล์คลิฟท์ ยางล้อหน้าแบบยางเดี่ยวในแต่ละข้างขนาดเล็ก สามารถใช้ได้กับฟอร์กลิฟต์ที่งายกเลื่อนขึ้นสูงสุดในระยะ 4.0-4.5 เมตร ในขณะล้อหน้าแบบยางคู่แต่ละข้างสามารถใช้ได้กับโฟล์คลิฟท์ที่งายกเลื่อขึ้นสูงสุดในระยะ 5.0-5.5 เมตร

ความสามารถในการยกสัมภาระของระบบไฮดรอลิก

นอกจากจะคำนึงถึงความสามารถในการบรรทุกสัมภาระบนงายกแล้ว ในการเลือกซื้อโฟล์คลิฟท์ เราจะต้องพิจารณาความสามารถในการยกของงาไฮดรอลิกด้วย โฟล์คลิฟท์ที่ใช้กันทั่วไปในออสเตรเลีย จะมีความสามารถในการยกของงายกไฮดรอลิก 155% ของอัตราที่ผู้ผลิตระบุไว้ (nominal capacity of the forklift) เหตุผลที่ต้องมีค่าความสามารถในการยกเกินค่าความสามารถที่ระบุไว้ถึง 55% เนื่องจากคนขับรถส่วนใหญ่มักไม่รู้ว่าสัมภาระที่จะทำการยกขึ้นจนสุดความสูงสุดของเสากระโดงมีน้ำหนักสุดธิเท่าไหร่กันแน่ (บางครั้งยกสัมภาระน้ำหนักเกินค่าความปลอดภัย 300%-400% ซึ่งอันตรายมาก) เพื่อลดความเสี่ยงต่อการพลิกคว่ำด้านข้างจึงให้ผู้ผลิตออกแบบระบบไฮดรอลิกที่มีความสามารถในการยกสูงกว่าค่ากำหนดโดยเฉพาะค่ากำหนดเรื่องความสูงของงายก

ประเด็นสำคัญคือ จะต้องมีการตรวจสอบให้แน่ชัดว่าความสามารถในการยกของไฮดรอลิกมีเท่าไหร่และมีค่าสวนเกินในการยกที่ไม่มีผลกระทบต่อสมดุลตัวรถกี่เปอร์เซ็นต์ อัตราตัวเลขในเรื่องนี้อาจเป็นแต้มต่อทางการค้าของผู้ผลิตแต่เพื่อความปลอดภัยในการใช้งาน Accident Research Centre, Monash University แนะนำว่า ไม่ควรยกสัมภาระสูงเกินความสามารถสุดในการยกที่ผู้ผลิตระบุไว้ แต่ถ้าจำเป็นก้ไม่เกิน 10%

ประเด็นความมั่นคงของโฟล์คลิฟท์และมาตรการลดความเสี่ยง

โฟล์คลิฟท์ทุกคันที่นำมาใช้งานจะต้องมีความมั่นคงตามมาตรฐานที่กำหนดไว้ คนขับหรือคนควบคุมรถ จะต้องมีความระมัดระวัง ทั้งในการขับเคลื่อน การเบรก การยก การถอยหลัง โดยยึดหลัก "ปานกลาง"(moderate) นั่นคือรักาาระดับความเคลื่อนไหวของโฟล์คลิฟท์ไม่ให้แรงหรือเบาจนเกินไป เนื่องจากความมั่นคงของโฟล์คลิฟท์มีค่าค่อนข้างต่ำซึ่งพร้อมจะเกิดการเสียสมดุลจนทำให้เกิดการพลิกคว่ำได้ทุกเมื่อ ทั้งนี้ สำนักความปลอดภัยของออสเตรเลียได้ให้ ข้อเสนอประเด็นความมั่นคงและมาตรการลดความเสี่ยงในการทำงานไว้ ดังต่อไปนี้

1. ปฏิบัติงานโฟล์คลิฟท์ตามมาตรฐานการทำงานที่หน่วยงานกำหนดไว้อย่างเคร่งครัด โดยเฉพาะในส่วนที่เกี่ยวข้องกับความมั่นคงของตัวรถ

2. ผู้ผลิตควรให้รายละเอียดเกี่ยวกับผลการทดสอบเกี่ยวกับความมั่นคงของโฟล์คลิฟท์คันที่เลือกชื้อเพื่อให้ลูกค้านำไปเป็นข้อมูล ในการกำหนดมาตรฐานความปลอดภัยในการใช้งาน

3. ผลการทดสอบเกี่ยวกับความมั่นคงของโฟล์คลิฟท์ ควรเป็นข้อมูลในสถานการณ์เลวร้ายที่สุด (worst case scenario) และข้อจำกัดต่างๆ เพื่อให้ลูกค้านำไปเป็นข้อมูลในการกำหนด ข้อหลีีกเลี่ยงสำหรับลดความเสี่ยงในการใช้งาน

4. ข้อมูลสำคัญที่ลูกค้าควรจะรับทราบได้แก่ ระยะการเบรก พร้อมกับข้อแนะนำในการรักษาระยะการเบรกไว้ให้คงที่ตามที่ระบุไว้ เช่น การลดความเร็วลงเมื่อน้ำหนักของสัมภาระที่บรรทุกอยู่เพิ่มขึ้นมาหรือเมื่อสัมภาระมีความสูงเพิ่มขึ้น โดยอาจทำเป็นตารางกำหนดค่าความเร็วตามน้ำหนักบรรทุกและความสูงของสัมภาระแสดงให้เห็นอย่างชัดเจน

5. เพื่อลดความเสี่ยงที่จะเกิดการพลิกคว่ำด้านข้างเมื่อวิ่งรถเปล่า ควนจำกัดความเร็วของโฟล์คลิฟท์ที่ 8 กม./ชม. หากใช้ยางล้อหน้าแบบคู่จำกัดไว้ที่ 9 กม./ชม. ยกเว้น หากผู้ผลิตมีอุปกรณ์หรือมาตรการเสริมที่พิสูจน์ได้ว่ามีความปลอดภัยเมื่อใช้ความเร็วที่สูงกว่านี้ก้อาจจะเพิ่มอัตราการจำกัดความเร็วได้มากกว่าที่ระบุไว้

6. แม้ว่าจะใช้รถโฟล์คลิฟท์รุ่นใหม่ที่มีอุปกรณ์จำกัดความเร็วอัตโนมัติตามความสูงของสัมภาระและปรับรัศมีการเลี้ยวจากตำแหน่งของล้อหน้า แต่คนขับรถโฟล์คลิฟท์คันนี้จะต้องระลึกถึงหลักการพื้นฐานไว้ข้อหนึ่ง นั่นคือ ทุกๆ 1 เมตรที่สัมภาระสูงขึ้นจะต้องลดความเร็วลงเมื่อมีการเลี้ยวเพราะระบบอัตโนมัติจะใช้ความเร็วคงที่แม้แต่เลี้ยว (ถึงจะมีการปรับตำแหน่งล้อหน้าแต่หากยังใช้ความเร็วเท่าเดิมก็ถือว่ายังมีความเสี่ยงอยู่เช่นเดิม)

7. การเลือกใช้ยางชนิดเติมลม ควรเป็นทางเลือกสุดท้ายสำหรับฟอร์กลิฟต์ที่ใช้งานบนพื้นเรียบเพราะมีความเสี่ยงต่อการเสียสมดุลสูงเมื่อเกิดเเรงเหวี่ยงอันเนื่องมาจากการเคลื่อนที่หรือการหยุกรถ รวมทั้ง ไม่ควรใช้ยางชนิดเติมลมกับโฟล์คลิฟท์ที่ใช้งานบนพื้นผิวขรุขระหรือมีระดับแตกต่างกัน เช่น ทางลูกรัง ทางหินกรวด บริเวณที่มีลูกระนาดหรือหลุมบ่อ ฯลฯ

8. ในกรณีจะมีการใช้ยางชนิดเติมลมกับรถโฟล์คลิฟท์สำหรับวิ่งบนทางขรุขระ และจะต้องยะกสัมภาระขึ้นสูงสุด หากมีหลุมลึกเกิน 20 มม.หรือมีเศษวัสดุกีดขวางอยู่จนอาจเกิดอันตรายกับยาง จะต้องเตรียมอุปกรณ์การซ่อมบำรุงยางไว้ เพื่อแก้ปัญหาฉุกเิฉินอันอาจจะเกิดขึ้นได้

9. หากไม่มีมาตรการความปลอดภัยที่ได้รับการรับรองเพิ่มเติมใดๆ จากผู้ผลิกในการลดความเสี่ยงต่อการพลิกคว่ำไปด้านข้าง โฟล์คลิฟท์ที่ใช้ยางล้อหน้าแบบยางเดี่่ยว ควรจำกัดความสูงในการยกของแขนไฮดรอลิกไว้ที่ 4.0-4.5 เมตร ส่วนโฟล์คลิฟท์ที่ใช้ยางล้อหน้าแบบยางคู่ควรจำกัดความสูงในการยกของแขนไฮดรอลิกไว้ที่ 5.0-5.5 เมตร

10. โฟล์คลิฟท์ที่ซื้อมาเพื่อใช้ยกสัทภาระขึ้นจนสุดความสูงที่ผู้ผลิตระบุไว้ ควรกำหนดให้ผู้ใช้งานระมัดระวังไม่ให้มีการยกงาไฮดรอลิกที่มีสัมภาระบรรทุกอยู่สูงเกิน 10% ของค่าสูงสุดที่ผู้ผลิตกำหนดไว้ เช่น ผู้ผลิตระบุว่าไฮดรอลิกยกสูงสุดได้ 3.0 เมตร หากจำเป็นต้องยกสูงกว่านี้จะต้องไม่เกิน 3.3 เมตร ทั้งนี้ ต้องแน่ใจว่าเสากระโดง (mast) ที่ใช้อยู่เอื้ออำนวยให้ทำได้ด้วย

11 . ควนเลือกใช้โฟล์คลิฟท์ที่มีระบบป้องกันการกระดกไปข้างหน้าของเสากระโดงเมื่อมีการยกสัมภาระสูงเหนือระดับ 1.6-2.0 เมตร ซึ่งระบบนี้จะทำให้เสากระโดงกระดกไปข้างหน้าไม่เกิน 2 องศาที่ความสูงเหนือระดับดังกล่าวขึ้นไป

12. ถ้างายกมีส่วนต่อพ่วงหรือเป็นแบบตระแกรงที่มีขอบยื่นออกมาจากแนวตัวรถ ซึ่งมีผลกระทบกับความมั่นคงของตัวรถ ควรพิจารณาใช้ยางล้อหน้าเป็นแบบยางคู่ (Dual tyres) ขนาดใหญ่ร่วมกับระบบซับแรงที่มากระทบกับเสากระโดงของโฟล์คลิฟท์

13. ในการยกสัมภาระบนงายกของรถโฟล์คลิฟท์ขึ้นไปบนรถบรรทุกหรือลงมาจากรถบรรทุกด้วยงายกโฟล์คลิฟท์ ควรมีมาตรการความปลอดภัยระหว่างการขนถ่ายให้เป็นไปตามมาตรฐานที่ยอมรับได้ ตัวอย่างมาตรฐานความปลอดภัย เช่น กำหนดจุดที่ตั้งที่มั่นคงของรถบรรทุก กำหนดจุดทำงานของรถโฟล์คลิฟท์ห่างจากรถบรรทุกในระยะที่สามารถยกของได้สะดวกและปลอดภัย มีผู้ควบคุมการทำงานหรือผู้สนับสนุนการทำงาน (คอยบอกระยะและดูแลความเรียบร้อยทั่วไป) เป็นต้น

WWW.PCNFORKLIFT.COM

วันจันทร์ที่ 14 มีนาคม พ.ศ. 2554

Komatsu ForkLift



Forklift Axles
Clark, Eaton, Spicer, Rockwell, Caterpillar, Euclid, I.H.C.
Forklift Bearings
RBC, New Departure, Timken, Aetna, Federal Mogul, NTN, Natachi, Koyo, INA, Torrington
Forklift Brake Parts
Bendix, Wagner, Rockwell, Echlin, EIS, Mico
Forklift Gas and LPG Parts
Carter, Bendix, Zenith, J & S, Century, Beam, IMPCO
Forklift Driveshafts, U-Joints, Flanges and Yokes
Spicer, Eaton, Rockwell
Forklift Gaskets
Fel-Pro
Forklift Electrical Components
Delco, Stewart Warner, Datcon, Valley Forge, Faria, Cole Hersee, Grote, Wells, JW Speaker, Sparton, Hobbs, Prestolite
Forklift Hoist Cylinders, Hose Reels and Attachments, Fittings
Cascade, Wagner, Weatherhead, Long Reach, Little Giant, Gates, Aeroquip, Aeromotive
Pallet Lift Trucks and Parts
BT, Bishamon, Rol-Lift, Multiton, Palletmaster
Forklift Hydraulic Pumps, Valves and Cylinders
Gresen, Vickers, Hydreco, Barnes, Tyrone, Cessna, Charlynn, Parker Hannifen, Comm'L Shearing, Ross, Garrison
Manual and Power Forklift Transmissions and Parts
Clark, Spicer, Eaton, Rockwell, Caterpillar, Allison, Borg Warner, New-Process
Forklift Motors and Parts
Continental, Hercules, Waukesha, Chrysler, Ford, I.H.C., Nissan, Toyota, Mitsubishi, GMC, Isuzu, Caterpillar, Perkins, Mazda
Forklift Seals
Chicago Rawhide, National, NOK
Forklift Spark Plugs
Prestolite, Champion, Autolite, Nippondenso
Forklift Starters, Alternators
Nippondenso, Prestolite, Nissan, Mitsubishi, Motocraft, Delco, Toyota
Forklift Steering Gears and Handwheels
Saginaw, TRW-ROSS, Charlynn, Sheller, Dan Floss
Forklift Timing Gears
Cloyes, Continental
Forklift Wheels, Rims and Brake Drums
Rudd, Rockwell, Clark, Caterpillar, Saginaw

WWW.PCNFORKLIFT.COM

Nissan ForkLift



ประวัติ และความเป็นมารถยก
ช่วงสงครามโลกครั้งที่1 ได้ผลักดันให้มีการพัฒนาการยกแท่นรองฐานปืนโดยช้ระบบไฟฟ้า แต่ด้วยความจำเป็นและสะดวกต่อการใช้งาน ได้มีการพัฒนาเพิ่มเติมในส่วนของการยกย้ายลูกระเบิดด้วยความนิ่มนวลปลอดภัยยิ่งขึ้น ซึ่งมีการพัฒนาใช้ทั้งระบบแมคคานิค และรถยกไฟฟ้าขึ้นมาด้วย
ในรุ่นแรกๆทีเดียว รถยกจะเป็นแบบง่าย ๆ ไม่มีระบบไฮโรลิค หรือแม้กระทั่งงายกแบบปัจจุบัน แต่จะใช้ระบบรอก ขับเคลือ่นดึงโซ่ยกขึ้นมา ได้ระดับความสูงไม่มาก ,การยึดชิ้นงานก็ใช้วธีการผูกมัดแบบ และไม่มีคนนั่งขับแต่อย่างใด
ส่วนรถโฟล์คลิฟนั่งขับที่สามารถค้นพบ มีขึ้นในปี คศ1917 ของ Clark เรียกชื่อเป็น Trucktracter ซึ่งพัฒนาขึ้นมาใช้เฉพาะClark’ axle plant ซึ่งเป็บรูปแบบเฉพาะเท่านั้น ต่อมาใน คศ.1923 บริษัท Yale ก็ผลิตรถยกเยลไฟฟ้า โดยการเพิ่มอุปกรณ์งายกนน.ขึ้นมาเป็นครั้งแรก ซึ่งระบบกลไกการเคลื่อนที่ยกขึ้นลงใช้ระบบ Ratchet & Pinion (ระบบเฟืองมีสปริงรองหมุน)
หลังจากนั้นความนิยมการใช้โฟล์คยังขึ้นๆลงๆ จนกระทั่งมีการจัดสร้างพาเลทเพื่อรองรับสิ่งเป็นแบบมาตราฐานขึ้นในปี คศ.1930 จากนั้นเองการพัฒนารถยกเยลจึงมีมาอย่างต่อเนื่องจนถึงปัจจุบัน ปัจจัยสำคัญอีกอย่างที่ก้าวกระโดดของรถยกเยล คือ การเกิดสงครามโลกครั้งที่สอง ซึ่งในปี คศ.1939 มีความต้องเครื่องอุปโภค และยุทโธปกรณ์สูงขึ้นมากจาก 500 หน่วยขนย้าย เป็น 23,500 หน่วย ในช่วงปีหลังของสงครามโลกครั้งที่สองจึงต้องการเร่งพัฒนาการยกขนย้ายโดยรถยกเยลอย่างมากในช่วงดังกล่าวด้วย โดยเฉพาะในรถรถยกเยลไฟฟ้าสามารถพัฒนาแบเตอรรี่ให้สามารถทำงานต่อเนื่องกันได้ถึง 8 ชม.โดยไม่การชาร์จแบตใหม่
ประมาณช่วง ปี คศ.1950 มีการพัฒนาสโตร์การจัดเก็บเพื่อให้ประสทธิภาพมากขึ้น โดยเฉพาะในการใช้พื้นที่ ฉะนั้นการออกแบบรถโฟล์ลิฟท์ในช่วงดังกล่าวจึงเน้นการ เคลื่อนย้ายและยกในพื้นที่แคบๆ ได้ดีขึ้น
ในระยะหลังมีการเน้นเรื่องความปลอดภัยมากขึ้น เนื่องจากพบว่ามีของตกลงบนพนักงานขับรถ จนกระทั่งช่วงปี คศ.1950 เป็นต้นมาจนกระทั่งช่วงก่อนถึงปี 1960 บริษัทผู้ผลิตรถยกเยลได้มีการพัฒนากรงสำหรับนั่งขับเพื่อป้องกันการเกิดอุบัติเหตุเกิดขึ้นกับคนขับ และได้กำหนดเป็นอุปกรณ์มาตราฐานที่จะต้องมีในปี 1980 เป็นต้นมาอย่างไรก็ตามการพัฒนาทางด้านความปลอดภัย ในส่วนของการความสมดุลย์ในการยกย้าย และขณะขับเคลื่อนโยกย้ายมากขึ้นตามลำดับ นอกเหนือจากเรื่องดังกล่าว ได้มีพัฒนาเพิ่มขึ้นในส่วนของการใช้พลังงานเพื่อความประหยัด โดยการใช้แกสทดแทนน้ำมัน และผลกระทบทางด้านสิ่งแวดล้อม โดยเฉพาะการลดปัญหาเรื่องควันไอเสียที่รบกวนการทำงานของพนักงานในพื้นที่ทำงาน
ปัจจุบันการพัฒนาการใช้เครื่องยนต์รถยกเยล โดยเริ่มการนำเครื่องยนต์ Hydrogen fuel cell มาทดลองใช้แล้วตั้งแต่ต้นปี คศ.2000 เป็นต้น คาดว่าอาจจะทำตลาดในเร็ววันนี้

WWW.PCNFORKLIFT.COM

Mitsubishi Forklift Truck 2009





ENG:
Slip into the role of a forklift truck driver and take place in the highly detailed and original vehicles. Forklift simulator in 2009 applies to different tasks in different scenarios to master. Thus, for example, trucks and trains load and unload goods in the huge warehouses to store. Several original car of a reputable manufacturer, you are in your fleet at your disposal.

An extensive training mode will help you become familiar with the management of lift trucks represent. A free game in which you want to own forklift can control rounds from this simulation. With Forklift Simulator 2009 Forklift experience realistic feeling to your home PC!

GER:
Schl?pfen Sie in die Rolle eines Gabelstaplerfahrers und nehmen Sie Platz in den hochdetaillierten und originalgetreuen Fahrzeugen. Im Gabelstapler-Simulator 2009 gilt es, verschiedene Aufgaben in unterschiedlichen Szenerien zu meistern. So m?ssen Sie beispielsweise Lastwagen und Z?ge be- und entladen oder Waren in den riesigen Lagerhallen einlagern. Verschiedene Original-Fahrzeuge eines namhaften Herstellers stehen Ihnen dabei in Ihrem Fuhrpark zur Verf?gung.
Ein umfangreicher Trainingsmodus hilft Ihnen, sich mit der Steuerung der Stapler

System Requirements:
* Windows Vista / XP
* DirectX 9.0c
* AMD Athlon 1.8 GHz from (optimally 2.4 - 3 GHz)
* RAM for XP and at least 512 MB at least 1 GB Vista
* Around 200 MB of hard disk space
* DirectX 9 compatible graphics card
* Windows compatible sound card

Category:


WWW.PCNFORKLIFT.COM